Mathematical Preliminaries and Notation

Lecture 2 Section 1.1

Robb T. Koether
Hampden-Sydney College

Fri, Aug 26, 2016

(9) Functions and Relations

(2) Equivalence Relations
(3) Graphs
(4) Order of a Function
(5) Mathematical Induction

6 Assignment

Outline

(9) Functions and Relations

(2) Equivalence Relations
(3) Graphs
4) Order of a Function
(5) Mathematical Induction

6 Assignment

Functions and Relations

Definition (Function)

A function from a set A to a set B is a subset of $A \times B$ with the property that for every $x \in A$, there is exactly one $y \in B$ such that (x, y) is in the function. We denote this as $f: A \rightarrow B$ and $f(x)=y$.

Definition (Domain)

The domain of $f: A \rightarrow B$ is the set A.

Definition (Codomain)

The codomain of $f: A \rightarrow B$ is the set B.

Functions and Relations

Definition (One-to-one)

A function f is one-to-one if

$$
f(x)=f(y) \Rightarrow x=y .
$$

Equivalently,

$$
x \neq y \Rightarrow f(x) \neq f(y) .
$$

Definition (Onto)

A function $f: A \rightarrow B$ is onto if for every $y \in B$, there is $x \in A$ such that $f(x)=y$.

Functions and Relations

Definition (One-to-one correspondence)
 A function $f: A \rightarrow B$ is one-to-one correspondence if it is one-to-one and onto.

Outline

(1) Functions and Relations

(2) Equivalence Relations
(3) Graphs
4) Order of a Function
(5) Mathematical Induction

6 Assignment

Equivalence Relations

Definition (Binary relation)

A binary relation on a set A is a subset of $A \times A$.

Definition (Equivalence relation)

An equivalence relation on a set A is a binary relation R on A with the following properties:

- Reflexivity: $(x, x) \in R$ for all $x \in A$.
- Symmetry: $(x, y) \in R \Rightarrow(y, x) \in R$ for all $x, y \in A$.
- Transitivity: $(x, y) \in R$ and $(y, z) \in R \Rightarrow(x, z) \in R$ for all $x, y, z \in A$.

Equivalence Relations

Definition (Equivalence class)

Given an equivalence relation R on a set A and an element $x \in A$, the equivalence class of x is the set

$$
[x]=\{y \in A \mid(x, y) \in R\} .
$$

Equivalence Relation

Example (Equivalence relation)

- We may define two computer programs to be equivalent if they produce the same output whenever the inputs are the same.
- Show that this is an equivalence relation.
- Describe the equivalence class of the "Hello, world" program under this relation.

Outline

(1) Functions and Relations

(2) Equivalence Relations
(3) Graphs
4) Order of a Function
(5) Mathematical Induction

6 Assignment

Graphs

Definition (Graph)

A graph is a pair (V, E) where V is a set of vertices and E is a set of edges.

Definition (Directed graph)

A directed graph is a graph in which each edge has a direction from one vertex to another.

Graphs and Relations

- A graph may be used to represent a relation.
- Or a function, because a function is a relation.
- Draw a vertex for every element in A.
- If a has the relation to b, then draw an edge from a to b.

An Interesting Example

- Let \mathbb{Z}_{3} represent the integers modulo 3: $\{0,1,2\}$ and let $f: \mathbb{Z}_{3} \times \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{3}$ be multiplication modulo 3 .
- We could list all possible products:

$$
\begin{array}{lll}
f(0,0)=0 & f(1,0)=0 & f(2,0)=0 \\
f(0,1)=0 & f(1,1)=1 & f(2,1)=2 \\
f(0,2)=0 & f(1,2)=2 & f(2,2)=1
\end{array}
$$

An Interesting Example

- Or we could make a table:

	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

An Interesting Example

- Or we could draw a graph:

An Interesting Example

- Or we could draw a better graph:

Outline

(1) Functions and Relations

(2) Equivalence Relations
(3) Graphs

4 Order of a Function

(5) Mathematical Induction

6 Assignment

Big Oh

Definition (Order at most, Big Oh)

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}$. Then f has order at most g if, for some positive constant c and for n sufficiently large,

$$
f(n) \leq c|g(n)| .
$$

- This is denoted by $f(n)=O(g(n))$.

Big Omega

Definition (Order at least, Big Omega)

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}$. Then f has order at least g if, for some positive constant c and for n sufficiently large,

$$
f(n) \geq c|g(n)| .
$$

- This is denoted by $f(n)=\Omega(g(n))$.

Big Theta

Definition (Same order, Big Theta)

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}$. Then f has the same order as g if, for some positive constants c_{1} and c_{2} and for n sufficiently large,

$$
c_{1}|g(n)| \leq f(n) \leq c_{2}|g(n)| .
$$

- This is denoted by $f(n)=\Theta(g(n))$.

Example

Example

- Let $f(n)=3 n^{2}+n$ and $g(n)=5 n^{3}+2 n^{2}+4$.
- Then

$$
\begin{aligned}
f(n) & =O(g(n),) \\
g(n) & =\Omega(f(n)), \\
f(n) & =\Theta\left(n^{2}\right), \\
g(n) & =\Theta\left(n^{3}\right) .
\end{aligned}
$$

Outline

(1) Functions and Relations

(2) Equivalence Relations
(3) Graphs
4. Order of a Function
(5) Mathematical Induction

6 Assignment

Mathematical Induction

- Given a proposition $P(n)$ about a positive integer n, it may be possible to prove $P(n)$ to be true for all positive integers by using mathematical induction.
- Show that $P(1)$ is true.
- Show that if $P(k)$ is true for some $k \geq 1$, then $P(k+1)$ must also be true.
- It would follow that $P(n)$ is true for all positive integers n.

Examples

Example

- Prove that $2^{n}>n$ for all $n \geq 1$.
- Prove that $2^{n}>n^{2}$ for all $n \geq 7$.
- Prove that $2^{n}>n^{3}$ for all $n \geq 10$.

Outline

(1) Functions and Relations

(2) Equivalence Relations
(3) Graphs
4) Order of a Function
(5) Mathematical Induction

6 Assignment

Assignment

Assignment

- Read Section 1.1.
- Section 1.1 Exercises: 22, 24, 31, 36, 41, 43.

