Mathematical Preliminaries and Notation Lecture 2 Section 1.1

Robb T. Koether

Hampden-Sydney College

Fri, Aug 26, 2016

Robb T. Koether (Hampden-Sydney College) Mathematical Preliminaries and Notation

∃ ► 4 Ξ

4 A 1

Equivalence Relations

5 Mathematical Induction

- 2 Equivalence Relations
- 3 Graphs
- Order of a Function
- 5 Mathematical Induction
- 6 Assignment

∃ ► 4 Ξ

Definition (Function)

A function from a set *A* to a set *B* is a subset of $A \times B$ with the property that for every $x \in A$, there is exactly one $y \in B$ such that (x, y) is in the function. We denote this as $f : A \to B$ and f(x) = y.

Definition (Domain)

The domain of $f : A \rightarrow B$ is the set A.

Definition (Codomain)

The codomain of $f : A \rightarrow B$ is the set *B*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (One-to-one)

A function f is one-to-one if

$$f(x) = f(y) \Rightarrow x = y.$$

Equivalently,

$$x \neq y \Rightarrow f(x) \neq f(y).$$

Definition (Onto)

A function $f : A \rightarrow B$ is onto if for every $y \in B$, there is $x \in A$ such that f(x) = y.

э

Definition (One-to-one correspondence)

A function $f : A \rightarrow B$ is one-to-one correspondence if it is one-to-one and onto.

∃ ► < ∃</p>

4 A 1

2 Equivalence Relations

- 3 Graphs
- Order of a Function
- 5 Mathematical Induction
- 6 Assignment

4 A 1

∃ ► 4 Ξ

Definition (Binary relation)

A binary relation on a set A is a subset of $A \times A$.

Definition (Equivalence relation)

An equivalence relation on a set *A* is a binary relation *R* on *A* with the following properties:

- Reflexivity: $(x, x) \in R$ for all $x \in A$.
- Symmetry: $(x, y) \in R \Rightarrow (y, x) \in R$ for all $x, y \in A$.
- Transitivity: $(x, y) \in R$ and $(y, z) \in R \Rightarrow (x, z) \in R$ for all $x, y, z \in A$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (Equivalence class)

Given an equivalence relation *R* on a set *A* and an element $x \in A$, the equivalence class of *x* is the set

$$[x] = \{y \in A \mid (x, y) \in R\}.$$

Example (Equivalence relation)

- We may define two computer programs to be equivalent if they produce the same output whenever the inputs are the same.
- Show that this is an equivalence relation.
- Describe the equivalence class of the "Hello, world" program under this relation.

2 Equivalence Relations

- Order of a Function
- 5 Mathematical Induction
- 6 Assignment

Sac

∃ ► 4 Ξ

I > <
 I >
 I

Definition (Graph)

A graph is a pair (V, E) where V is a set of vertices and E is a set of edges.

Definition (Directed graph)

A directed graph is a graph in which each edge has a direction from one vertex to another.

- A graph may be used to represent a relation.
- Or a function, because a function is a relation.
- Draw a vertex for every element in A.
- If *a* has the relation to *b*, then draw an edge from *a* to *b*.

- Let \mathbb{Z}_3 represent the integers modulo 3: $\{0, 1, 2\}$ and let $f \colon \mathbb{Z}_3 \times \mathbb{Z}_3 \to \mathbb{Z}_3$ be multiplication modulo 3.
- We could list all possible products:

$$\begin{array}{ll} f(0,0)=0 & f(1,0)=0 & f(2,0)=0 \\ f(0,1)=0 & f(1,1)=1 & f(2,1)=2 \\ f(0,2)=0 & f(1,2)=2 & f(2,2)=1 \end{array}$$

• Or we could make a table:

	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

3

An Interesting Example

• Or we could draw a graph:

э

DQC

An Interesting Example

• Or we could draw a better graph:

590

∃ ► < ∃</p>

Image: A matrix and a matrix

- 2 Equivalence Relations
- 3 Graphs

Mathematical Induction

6 Assignment

4 3 > 4 3

I > <
 I >
 I

Definition (Order at most, Big Oh)

Let $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$. Then *f* has order at most *g* if, for some positive constant *c* and for *n* sufficiently large,

 $f(n) \leq c|g(n)|.$

• This is denoted by f(n) = O(g(n)).

Definition (Order at least, Big Omega)

Let $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$. Then *f* has order at least *g* if, for some positive constant *c* and for *n* sufficiently large,

 $f(n) \geq c|g(n)|.$

• This is denoted by $f(n) = \Omega(g(n))$.

(B)

Definition (Same order, Big Theta)

Let $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$. Then *f* has the same order as *g* if, for some positive constants c_1 and c_2 and for *n* sufficiently large,

 $c_1|g(n)| \leq f(n) \leq c_2|g(n)|.$

• This is denoted by $f(n) = \Theta(g(n))$.

(B)

Example

$$f(n) = O(g(n), 1)$$

$$g(n) = \Omega(f(n)),$$

$$f(n) = \Theta(n^2),$$

$$g(n) = \Theta(n^3).$$

Robb T. Koether (Hampden-Sydney College) Mathematical Preliminaries and Notation

Fri, Aug 26, 2016 22 / 27

2

DQC

ヘロト 人間 とくほとくほとう

- 2 Equivalence Relations
- 3 Graphs
- Order of a Function
- 5 Mathematical Induction

Assignment

∃ ► < ∃</p>

I > <
 I >
 I

- Given a proposition *P*(*n*) about a positive integer *n*, it may be possible to prove *P*(*n*) to be true for all positive integers by using mathematical induction.
 - Show that *P*(1) is true.
 - Show that if P(k) is true for some k ≥ 1, then P(k + 1) must also be true.
 - It would follow that P(n) is true for all positive integers n.

Example

- Prove that $2^n > n$ for all $n \ge 1$.
- Prove that $2^n > n^2$ for all $n \ge 7$.
- Prove that $2^n > n^3$ for all $n \ge 10$.

3

- 2 Equivalence Relations
- 3 Graphs
- Order of a Function
- 5 Mathematical Induction

∃ ► 4 Ξ

I > <
 I >
 I

Assignment

- Read Section 1.1.
- Section 1.1 Exercises: 22, 24, 31, 36, 41, 43.

< ロト < 同ト < ヨト < ヨト